Motion-Powered Gameboy

Yue Zhu Instructor: Prof. Junrui Liang

Nov. 23, 2021

Mechatronics and Energy TransformAtion Laboratory 机电与能量转换实验室

- I. Background
- II. Energy Solutions
- III. Pre-design towards Demand
- IV. Experimental Charge and Discharge Circle
- V. Conclusion

- I. Background
- II. Energy Solutions
- III. Pre-design towards Demand
- IV. Experimental Charge and Discharge Circle
- V. Conclusion

Challenges of IoT

- Features of electronics deployment
 - Large-scale → Too many batteries and wires
 - − Scattered → Hard to maintain

Challenges of Battery-Free HCI

- Advances in hardware and algorithms have improved the energy efficiency of computing exponentially. Most researches and applications of battery-free IoT focus on sensor nodes.
- Human-Computer Interaction (HCI) electronics are generally screencentered, and limited by the high power consumption required by information output. Therefore, they have higher requirements for energy harvesting and management.

- LCD、OLED

Eink display technology

Off-the-shelf commercial Electrophoretic Display (EPD)

- Rearrange pigment particles with electric field
- Display by reflecting ambient light

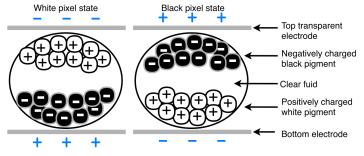


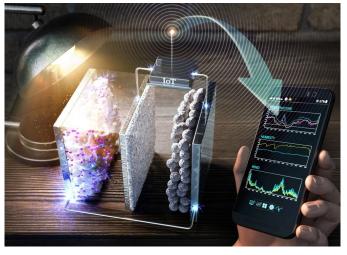
Fig. 2. Basic overview of an electrophoretic display cell.

Tag: months without replacing battery

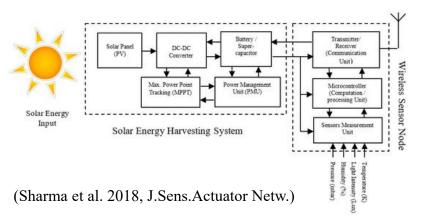
Notebook: weeks without charging

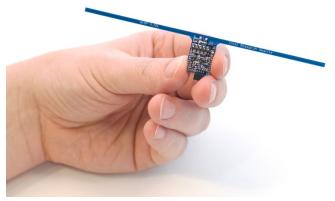
Challenges of Battery-Free HCI

- Another challenge that battery-free HCI devices face is meeting users' expectations.
 - For example, upon the user pushes the key 'Enter,' a 'Hello, world!' should be displayed as content.

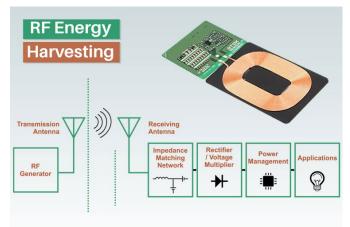


Energy harvesting

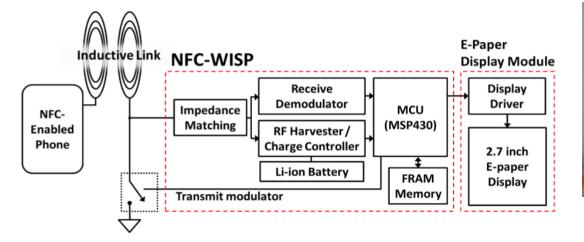



Solar energy

RF energy



(Kim et al. 2020, EES)



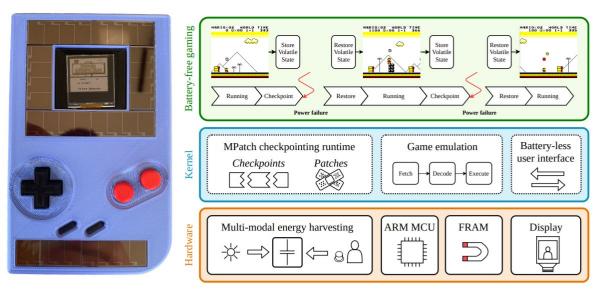
NFC-WISP Tag

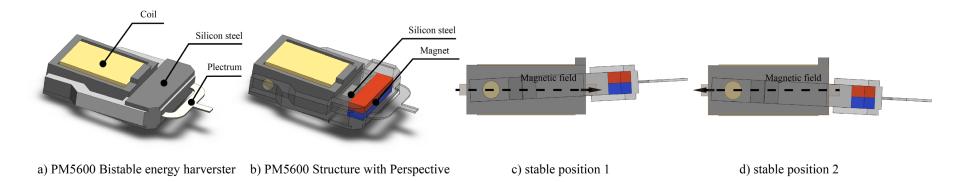
Display tag hardware block diagram.

 Harvests energy and communicates with phone by NFC.

Display tag without the plastic case

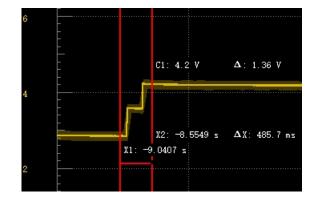
• Battery-free Game Boy




Fig. 3. ENGAGE hardware platform (left) and its internal architecture (right).

- Powered by solar energy and mechanical energy
- MPatch just-in-time checkpointing
- Non-back lit reflective LCD panel

Press button really consistently, then get 10s to play.



Bistable Energy Harvester

Unique feature:

- The amount of energy generated can be predicted by because of potential energy pre-charging;
- Possible to design the Human-Computer Interaction process first and then design the harvester towards the demand.

Vibration-Powered IoT Platform——ViPSN

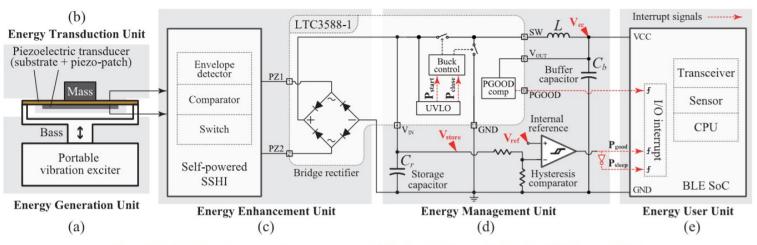
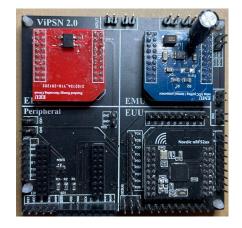
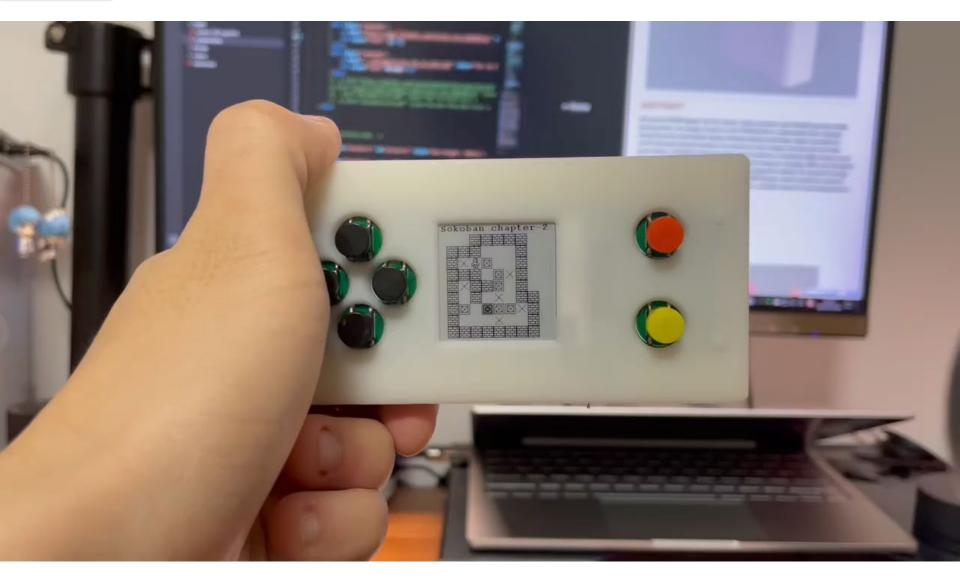
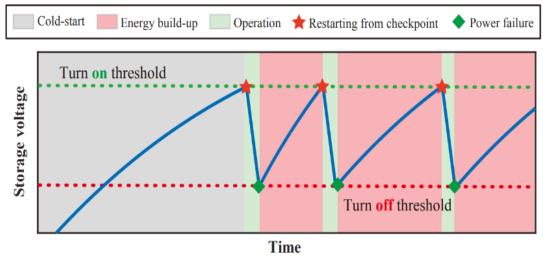



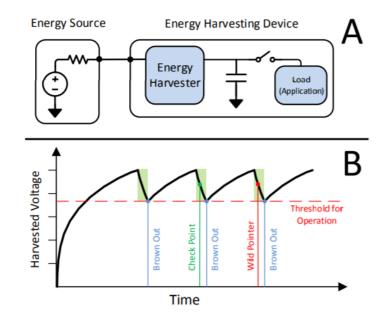
Fig. 2: ViPSN hardware architecture. (a) EGU. (b) ETU. (c) EEU. (d) EMU. (e) EUU.


Fig. 1: ViPSN prototype including six modules. (a) System assembly. (b) Module breakdown. (c) Edge demonstration unit.

Xin Li, Li Teng, Hong Tang, Jingying Chen, Haoyu Wang, Yu Liu, Minfan Fu and Junrui Liang, "ViPSN: A Vibration-Powered IoT Platform", *IEEE Internet of Things Journal (Early Access)*, 17 August 2020, ISSN: 2327-4662



- I. Background
- II. Energy Solutions
- III. Pre-design towards Demand
- IV. Experimental Charge and Discharge Circle
- V. Conclusion


Intermittent execution of VEH-powered IoT systems.[1]

- An intermittent execution proceeds in bursts when energy is available
- Intermittent execution may lead to [2]:
 - Unpredictable control-flow
 - Compromising an application's forward progress
 - Inconsistent memory
 - leaving a device inconsistent with its environment
 - Complicating device-to-device communication

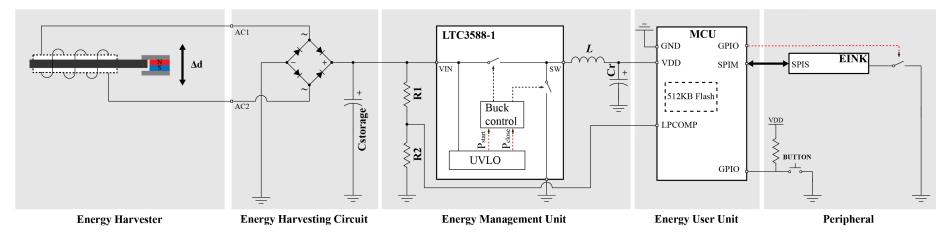
[1]Xin Li, Hong Tang, Yiyao Zhu, Haoyu Wang, and Junrui Liang*, "Power solution of a vibration-powered sensing node," Proceedings of the 9th International Power Electronics and Motion Control Conference, Nanjing, China, May 31-June 3, 2020. (IPEMC - ECCE Asia 2020) [2]B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, "Intermittent computing: Challenges and opportunities," in 2nd Summit on Advances in Programming Languages (SNAPL 2017). Schloss Dagstuhl-Leibniz- Zentrum fuer Informatik, 2017

I Motion-Powered Gameboy

- Out-of-box Solution:
- Energy-aware checkpointing
- Possible to achieve battery-free by being equipped with strong enough energy storage;
- More than 70 mJ is needed running sample code from manufacturer;
- Suffering when powering the device.

I Reduce power consumption

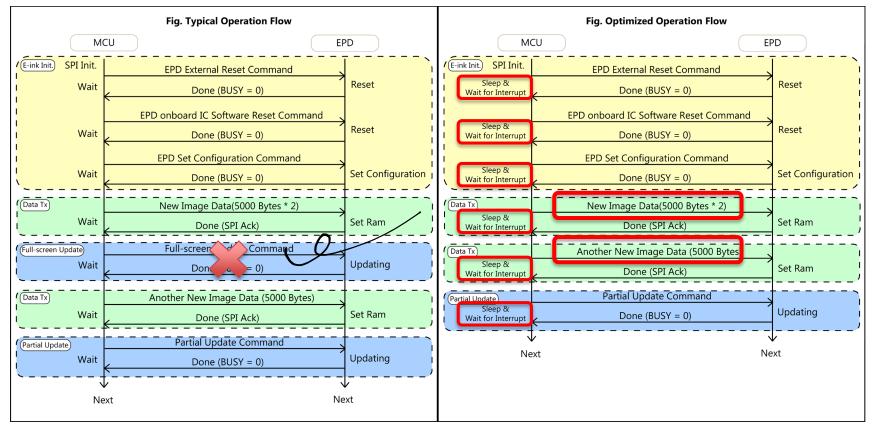
- Generally how to reduce power consumption:
 - 1. Maximizing time in low-power modes
 - 2. Switching on peripherals only when needed
 - 3. Reduce extra control flow.


• What we did:

- 1. Interrupts to wake the processor and control program flow
- 2. Modification in communication protocol
- 3. MOS to switch on/off peripherals
- 4. Optimization of state machine and peripheral operation flow
- Two iterations:
 - Flash-based Solution
 - FRAM-based Solution

II Flash-based Solution

Low-power mode Power Consumption

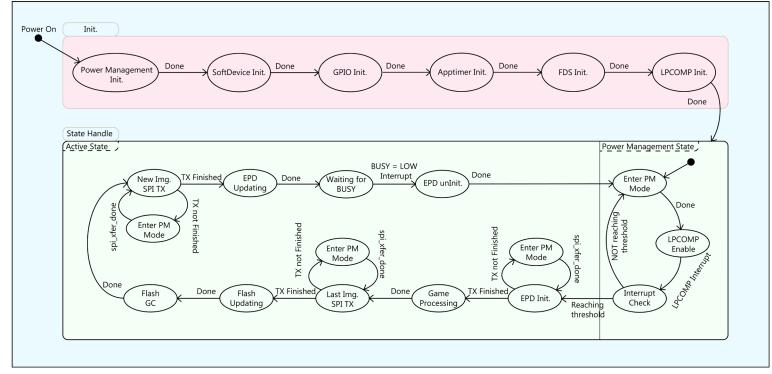


Low-power mode Power Consumption							
Operation	Unit	Part	Average current (uA)	voltage(V)	Average power (uW)		
		Capacitor	0.867	8	6.936		
Sleeping	EMU	LTC3588-1	0.081	8	6.936 0.648 7.112 6.27 3.3		
		Resistors(9MΩ)	0.889	8	7.112		
	EUU	Nordic 52832	1.9	3.3	6.27		
	Peripheral	NMOS AO-3414	1	3.3	3.3		
Operation	Units	Part	Average current (uA)	voltage(V)	Average power (uW)		
LPCOMP	EUU	Nordic 52832	0.5	3.3	1.65		
SUM					25.916		

I Flash-based Solution

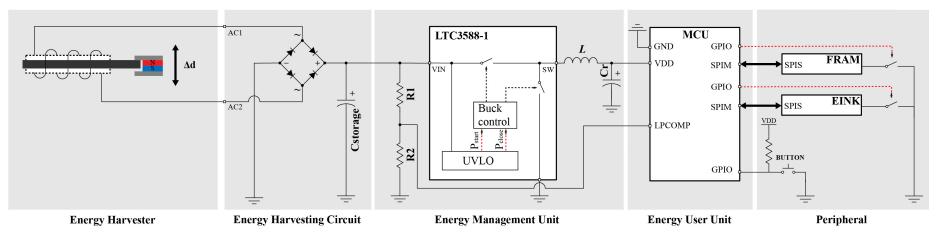
• Optimize the operation flow of Eink

Chart. Energy Consumption under Different Update Modes


Undata Mada	Energy Consumption(mJ)			
Update Mode	Sample Code	Optimized Code		
Full-screen Update	71.03	10.507		
Partial Update	16.295	3.325		

71.03mJ to 3.325mJ!

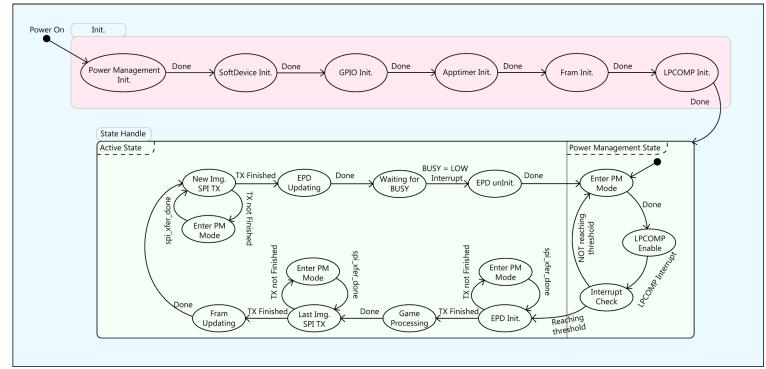
I Flash-based Solution



Operation	Out-of-box solution		Flash Based	Solution	Energy Reduced		
	Duration(ms)	Energy(mJ)	Duration(ms)	Energy(mJ)	Amount (mJ)	Percentage	
Eink Initialization	34	0.546	50	0.335	0.211	39%	
Game Processing	8.5	0.145	8.5	0.145	-	-	
Last Img. SPI TX	104	1.494	14	0.105	1.389	93%	
Flash Updating	90	1.320	90	1.320	-	-	
Flash Garbage Collection	105	1.438	105	1.438	-	-	
New Img. SPI TX	55	0.915	7	0.058	0.857	94%	
Eink Updating	553	16.295	553	3.325	12.97	80%	
SUM	949.5	22.153	827.5	6.726	15.427	70%	

II FRAM-based Solution

Low-power mode Power Consumption

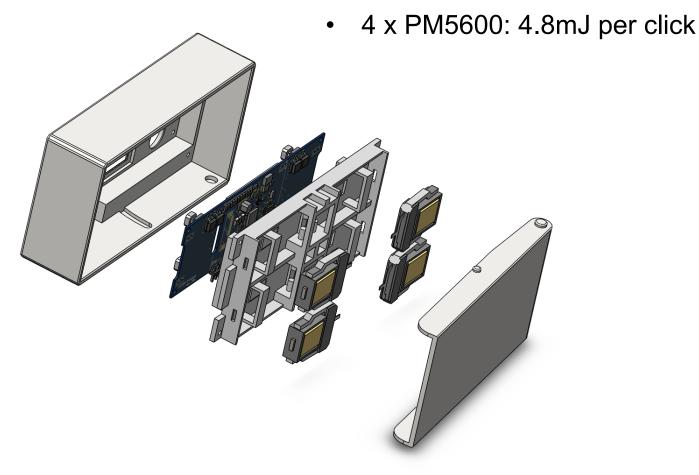


	Low-power mode Power Consumption						
Operation	Unit	Part	Average current (uA)	voltage(V)	Average power (uW)		
		Capacitor	0.867	8	6.936		
	EMU	LTC3588-1	0.081	8	0.648		
Classica		Resistors($9M\Omega$)	0.889	8	7.112		
Sleeping	EUU	Nordic 52832	1.9	3.3	6.27		
	Deviates	Eink NMOS	1	3.3	3.3		
	Peripheral	Fram NMOS	1	3.3	3.3		
Operation	Units	Part	Average current (uA)	voltage(V)	Average power (uW)		
LPCOMP	EUU	Nordic 52832	0.5	3.3	1.65		
SUM					29.216		

I FRAM-based Solution

• Optimize the state machine

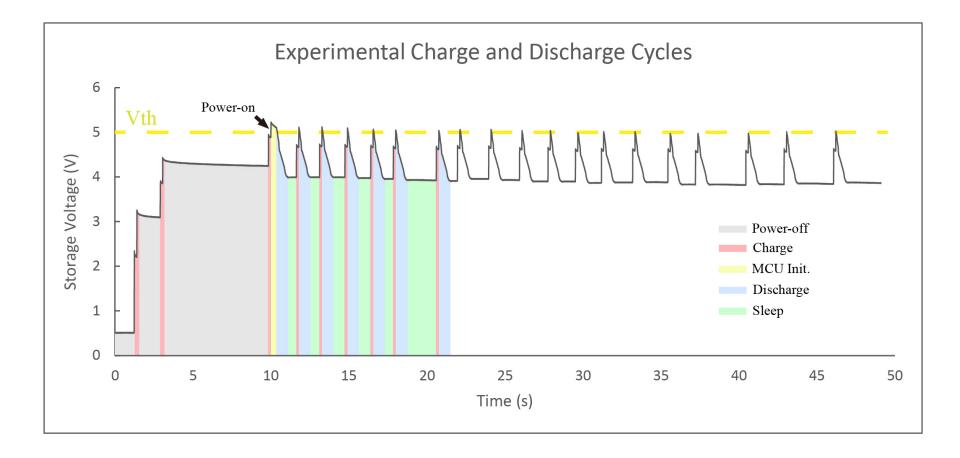
Operation	Out-of-box solution		Operation	FRAM Based Solution		Energy Reduced	
	Duration(ms)	Energy(mJ)	Operation	Duration(ms)	Energy(mJ)	Amount (mJ)	Percentage
Eink Initialization	34	0.546	Eink Initialization	50	0.335	0.211	39%
Game Processing	8.5	0.145	Game Processing	8.5	0.145	-	-
Last Img. SPI TX	104	1.494	Last Img. SPI TX	14	0.105	1.389	93%
Flash Updating	90	1.320	FRAM Operation	51	0.542	2.216	80%
Flash Garbage Collection	105	1.438					
New Img. SPI TX	55	0.915	New Img. SPI TX	7	0.058	0.857	94%
Eink Updating	553	16.295	Eink Updating	553	3.325	12.97	80%
SUM	949.5	22.153	SUM	683.5	4.510	17.643	80%



- I. Background
- II. Energy Solutions
- III. Pre-design towards Demand
- IV. Experimental Charge and Discharge Circle
- V. Conclusion

IV Pre-design towards Demand

• Lever structure: maximum 36N to trigger



- I. Background
- **II.** Energy Solutions
- III. Pre-design towards Demand
- IV. Experimental Charge and Discharge Circle
- V. Conclusion

IV Experiments Work Cycle

- I. Background
- II. Energy Solutions
- III. Pre-design towards Demand
- IV. Experimental Charge and Discharge Circle
- V. Conclusion

V Conclusion

- Achievements and contributions:
 - Presented the first robust, motion-powered and user-friendly personal mobile gaming device
 - Designed and built up hardware and software platform for developing new games
 - Provided a methodology to design the battery-free HCI device that pre-design the harvester towards energy demand of application

Thank you!

Mechatronics and Energy TransformAtion Laboratory 机电与能量转换实验室

